10-2. Parabola, Ellipse, Hyperbola
hard

If the tangent at a point on the ellipse $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ meets the coordinate axes at $A$ and $B,$  and  $O$  is the origin, then the minimum area (in sq. units) of the triangle $OAB$  is

A

$3\sqrt 3$

B

$\frac {9}{2}$

C

$9$

D

$\frac {9}{\sqrt 3}$

(JEE MAIN-2016)

Solution

Equation of tangent to ellipse

$\frac{x}{{\sqrt {27} }}\cos \theta  + \frac{y}{{\sqrt 3 }}\sin \theta  = 1$

Area bounded by line and co-ordinate axis

$\Delta  = \frac{1}{2}.\frac{{\sqrt {27} }}{{\cos \,\theta }}.\frac{{\sqrt 3 }}{{\sin \theta }} = \frac{9}{{\sin 2\theta }}$

$\Delta  = $ will be minimum when $\sin 2\theta  = 1$

${\Delta _{\min }} = 9$

Standard 11
Mathematics

Similar Questions

Start a Free Trial Now

Confusing about what to choose? Our team will schedule a demo shortly.