If the tangent at a point on the ellipse $\frac{{{x^2}}}{{27}} + \frac{{{y^2}}}{3} = 1$ meets the coordinate axes at $A$ and $B,$ and $O$ is the origin, then the minimum area (in sq. units) of the triangle $OAB$ is
$3\sqrt 3$
$\frac {9}{2}$
$9$
$\frac {9}{\sqrt 3}$
If $C$ is the centre of the ellipse $9x^2 + 16y^2$ = $144$ and $S$ is one focus. The ratio of $CS$ to major axis, is
The eccentricity of an ellipse whose centre is at the origin is $\frac{1}{2}$ . If one of its directices is $x = - 4$ then the equation of the normal to it at $\left( {1,\frac{3}{2}} \right)$ is
Tangent is drawn to ellipse $\frac{{{x^2}}}{{27}} + {y^2} = 1\,at\,(3\sqrt 3 \cos \theta ,\sin \theta )$ where $\theta \in (0, \pi /2)$ . Then the value of $\theta$ such that sum of intercepts on axes made by this tangent is minimum, is
Eccentric angle of a point on the ellipse ${x^2} + 3{y^2} = 6$ at a distance $2$ units from the centre of the ellipse is
Let $F_1\left(x_1, 0\right)$ and $F_2\left(x_2, 0\right)$, for $x_1<0$ and $x_2>0$, be the foci of the ellipse $\frac{x^2}{9}+\frac{y^2}{8}=1$. Suppose a parabola having vertex at the origin and focus at $F_2$ intersects the ellipse at point $M$ in the first quadrant and at point $N$ in the fourth quadrant.
($1$)The orthocentre of the triangle $F_1 M N$ is
($A$) $\left(-\frac{9}{10}, 0\right)$ ($B$) $\left(\frac{2}{3}, 0\right)$ ($C$) $\left(\frac{9}{10}, 0\right)$ ($D$) $\left(\frac{2}{3}, \sqrt{6}\right)$
($2$) If the tangents to the ellipse at $M$ and $N$ meet at $R$ and the normal to the parabola at $M$ meets the $x$-axis at $Q$, then the ratio of area of the triangle $M Q R$ to area of the quadrilateral $M F_{\mathrm{I}} N F_2$ is
($A$) $3: 4$ ($B$) $4: 5$ ($C$) $5: 8$ ($D$) $2: 3$
Givan the answer qestion ($1$) and ($2$)